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1. Introduction

A recent proposal [1] to redefine the kilogram, ampere, and other base units of the

International System of Units (SI) by choosing exact values for several fundamental

constants has offered a concrete vision of a future system of units that one could rightly

call a “Quantum SI”. From the standpoint of electrical measurements, the key feature

of this proposal is that it defines exact values for both the Planck constant h and

the elementary charge e, which means that both the Josephson constant KJ = 2e/h

and the von Klitzing constant RK = h/e2 have exactly defined values. Since practical

standards of voltage and resistance based on these quantum effects have long surpassed

the uncertainty of the best SI realizations of the ampere and of derived electrical units,

the new SI will automatically simplify and improve the uncertainty of precision electrical

measurements. This is especially true for measurements that involve both electrical and

mechanical units, such as electrostatic force balances used as primary standards for

forces below 10−4 newton [2].

A key element of the proposed Quantum SI is the assumption that the relations for

KJ and RK are exact. There are three types of arguments in support of this assumption;

each will be examined in detail below. Theoretically, there are no current predictions for

any correction terms. Empirically, several experiments have shown that KJ and RK are

independent of device design, material, measurement setup, etc. This demonstration

of universality is consistent with the exactness of the relations, but does not prove

it outright. Finally, experimental data on fundamental constants can be analyzed

independent of the assumptions KJ = 2e/h and RK = h/e2 to test for discrepancies.

Given the important role that KJ and RK are likely to play in any new SI (regardless

of the details of its construction), it is important to pursue further tests of their relations

to h and e. Of particular value are empirical tests that do not focus on the universality

of the effects but look directly for corrections to the predicted relations. One such test,

first proposed in 1985 [3] and discussed in detail more recently [4, 5], is the quantum

metrology triangle (QMT), which combines the Josephson and quantum Hall effects

with a third quantum electrical effect, single-electron tunneling. The QMT, either the

original form or a closely related test [4, 5], is being pursued by at least four national

measurement institutes (NIST in the United States, PTB in Germany, BNM-LNE in

France, and NPL in the United Kingdom).

The purpose of this paper is to review the current status of the QMT in detail, and

in particular to examine each of its “legs” separately. This provides a useful context in

which to interpret recent and forthcoming QMT experiments. Section 2 presents the

basic equations for the QMT, and Section 3 considers the quantum Hall, Josesphson, and

single-electron tunneling effects separately. Section 4 applies the results of Section 3 to

the interpretation of a recent QMT result from NIST and Section 5 contains conclusions

and an outlook for the future.
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2. The Quantum Metrology Triangle

The QMT is illustrated in figure 1. It consists of quantum electrical standards for

current, voltage, and resistance linked by Ohm’s law to form a triangle. The defining

relations for the three quantum standards are as follows.

(i) A Josephson voltage standard (JVS) driven at a frequency fJ and operating on the

nth step produces a voltage

UJVS = nfJ/KJ with KJ =
2e

h
(1 + εJ). (1)

(ii) A quantum Hall resistance (QHR) standard quantized on the ith plateau has a

resistance

RQHR = RK/i with RK =
h

e2
(1 + εK). (2)

(iii) A single-electron tunneling (SET) current standard driven at a frequency fS

produces a current

ISET = QSfS with QS = e(1 + εS). (3)

For each quantum standard, a possible deviation from the expected relation involving h

and/or e is parametrized by ε. Combining equations (1), (2), and (3) using Ohm’s law

U = RI, and letting A1 represent all known scaling factors in a real QMT experiment

(such as bridge ratios), we have

nJfJ

KJ

= A1
RK

i
QSfS (4)

nJi

A1

fJ

fS

= KJRKQS (5)

1

2

nJi

A1

fJ

fS

= 1 + εJ + εK + εS, (6)

where the last line relies on the fact that each ε term is much less than 1.

In practice, the terms on the left side of the last line are known with negligible

uncertainty and can be chosen so that the left side of equation 6 is equal to 1. Thus

if there are no corrections to any of the three quantum electrical standards, the QMT

amounts the relation 1 = 1. The result of an experimental realization of the QMT can

be written as

1 = 1 + ∆expt ± uexpt, (7)

where ∆expt is the measured deviation from the expected relation 1 = 1 and uexpt is the

relative standard uncertainty of the result. If ∆expt is less than uexpt the result “closes”

the QMT and provides evidence against corrections to the three quantum standards

larger than uexpt (neglecting for the moment the possibility of cancellation between ε

terms of opposite sign). If an experiment were to show that the QMT did not close, i.e.,

∆expt was larger than uexpt, it would indicate that one of the three quantum electrical

standards does have a significant correction term, but it would not indicate which one.
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Figure 1. Original version of the quantum metrology triangle 1985 [3] linking
the Josephson effect (JVS), the quantum Hall effect (QHR) and the single-electron
tunneling effect (SET).

3. Status of the Individual Legs of the QMT

The discussion thus far considers the QMT to be a test with binary outcomes of “pass”

or “fail”, and represents the conventional view of the QMT found in the literature and

elsewhere. The uncertainty at which closing the QMT will improve confidence in the

quantum electrical standards is generally said to be below about 1 part in 107. However,

this view ignores the fact that the current situation for each of the three legs is quite

different.

For each leg I will consider what is known about possible corrections in three areas:

theory, empirical tests of universality, and direct tests of the quantum relation for each

leg. The third area requires some explanation. A direct test means one in which

the expected relation between the quantum electrical standard and h and/or e is not

assumed. For example, a JVS could be compared to a device that produces an SI volt

to obtain a measurement of KJ in SI units, and this could then be compared to an

SI value of the quantity 2e/h. Although this is conceptually simple, two difficulties

arise in practice. First, realizing an SI volt (or ohm or ampere) with the required

uncertainty (below 1 × 10−6) generally requires both a clever idea and a rather heroic

effort. (An excellent example is the realization of the SI volt described in [6].) Second,

the recommended values of fundamental constants are the result of a least-squares

adjustment that assumes the quantum relations are valid [7] (for KJ and RK only;

the relation for QS has not entered the observational equations for any adjustments to

date). Thus one cannot simply use the recommended value of 2e/h in a test ofKJ = 2e/h

because this value is affected by experiments involving the Josesphon effect. What can

be done is to perform the least-squares adjustment with the assumptions KJ = 2e/h

and RK = h/e2 relaxed, and with adjustable corrections factors εK and εJ inserted into

the relevant observational equations. The adjustment then provides the best values for
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εK and εJ consistent with a wide variety of experiments. Such an analysis is described in

Appendix F of the 2002 CODATA report on the adjustment of fundamental constants

[7]. An upated version based on the 2006 values of the fundamental constants [8] has

been performed recently [9] and these results are summarized below.

3.1. Quantum Hall Leg

Soon after the discovery of the quantum Hall effect in 1980 [10], Laughlin presented

a topological argument for RK = h/e2 in an idealized two-dimensional electron gas

(2DEG) [11]. As described by Jeckelmann and Jeanneret [12], various theories based

on more realistic models of QHR devices also support the ideal relation. It must be

noted, however, that real QHR devices show deviations of the Hall resistance from the

expected value due to a host of effects such as temperature, measurement current, and

contact resistance [12]. There is no quantitative theory that includes all of these effects

and the use of the QHR as a fundamental resistance standard requires adherence to

a lengthy set of guidelines [13]. Thus it is only the value of the QHR extrapolated to

zero longitudinal resistance (i.e., zero dissipation) that is found to be exactly quantized,

and even with this restriction the fact that εK = 0 is generally viewed as “a continuing

surprise” [7].

Empirically, the extrapolated value of the QHR has been shown to be independent

of the particular device, the host material for the 2DEG (GaAs heterostructure or Si

MOSFET), the growth technique for GaAs 2DEGs (MBE or MOCVD), the plateau

index i, and the mobility of the 2DEG within a relative standard uncertainty of

3 × 10−10 or less [14, 12]. Two devices on the same chip have been compared in a

bridge configuration and found to be equivalent within 8× 10−11 [15]. As mentioned in

the Introduction, this does not prove εK = 0, but it does put tight constraints on any

correction mechanism.

The direct test of RK = h/e2 based on the 2006 values of the constants [9] found

εK = (20± 18)× 10−9. (8)

Thus the best estimate of εK when the assumptions KJ = 2e/h and RK = h/e2 are

relaxed is consistent with zero. It turns out that in the case of RK one can arrive at

essentially the same result without the full least-squares adjustment, and it is instructive

to present this argument as a check on the more rigorous but less intuitive analysis.

Precise comparisons of QHR standards with the SI ohm have been done with a Thomson-

Lampard calculable capacitor, a special resistor having a calculable ac/dc difference,

and a lengthy chain of ac, quadrature, and dc bridges (the example with the smallest

uncertainty is [16]). Concise summaries of these experiments are given in [17] and [7].

The weighted mean of five such experiments gives the following value for RK in terms

of the SI ohm [7],

RK = 25 812.808 18(47) Ω [1.8× 10−8]. (9)

(Here the number in parentheses is the standard uncertainty referred to the last digits of

the quoted value and the number in square brackets is the relative standard uncertainty.)
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As for the SI value of h/e2, it can be expressed in terms of the fine structure constant

α, the speed of light c, and the magnetic constant µ0 as

h

e2
=
µ0c

2α
= 25 812.807 557(18) Ω [6.8× 10−10], (10)

where the numerical value is the 2006 recommended value [8]. Since c and µ0 are defined

constants in the current SI, h/e2 depends only on α. Although the experiments involving

calculable capacitors do give values of α that affect the numerical value of h/e2 slightly,

two other types of experiments (based on the electron magnetic moment anomaly in

one case and photon recoil of atoms in the other) have uncertainties so much smaller

that the final value of α is nearly independent of experiments involving the QHR. Thus

a fairly good test of RK = h/e2 can be done by comparing the numerical values in eqns.

9 and 10. This gives

εK = (24± 18)× 10−9, (11)

which is in good agreement with the more rigorous value in equation 8.

The status of the QHR leg of the QMT can be summarized as follows. (1) There is

no theoretical prediction that εK is not zero, provided that the QHR value is extrapolated

to zero longitudinal resistance. However, the general topological arguments for exact

quantization apply only to ideal systems and an explanation for the exactness observed

in real devices remains elusive. (2) There is considerable empirical evidence that the

QHR value, again extrapolated to zero longitudinal resistance, is universal at the level

of a few parts in 1010. (3) A direct test of RK = h/e2 indicates that εK is smaller than a

few parts in 108. Although this is widely viewed as good enough to allow the proposed

redefinition of the SI to proceed, there is considerable room for improvement since the

experimental uncertainty of modern QHR standards is a few parts in 109.

3.2. Josephson Leg

Several arguments for the exactness ofKJ = 2e/h were given around 1970 [18, 19, 20, 21],

all based on very general properties such as gauge invariance and the requirement that

the wavefunction of the superconducting condensate be single-valued. Unlike the case of

the quantum Hall effect, real JVS devices are believed to satisfy quite well the conditions

assumed in the theory. As shown by Fulton [19], this fact can be seen as a consequence

of the exactness of flux conservation in superconductors of closed geometry. Thus these

theoretical arguments are generally viewed as providing a solid reason to expect εJ = 0.

Empirically, the universality of the voltage from a JVS has been established by

numerous experiments. Quoting relative standard uncertainties in all cases, arrays of

the same type of junction agreed within 2 × 10−17 [22], arrays of different types of

junctions agreed within a few parts in 1010 [23, 24], and an array of high-temperature

superconductor junctions agreed with a conventional array within 2 × 10−8 [25]. Also,

a pair of single junctions agreed within 3× 10−19 [26].

The direct test of KJ = 2e/h based on the 2006 values of the constants [9] found

εJ = (77± 80)× 10−9. (12)
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Thus the best estimate of εJ when the assumptions KJ = 2e/h and RK = h/e2 are

relaxed is consistent with zero. However, further analysis has revealed that this result

is not as robust as originally thought. It turns out that the value of εJ is determined

predominately by two different routes, i.e., two different types of observational equations

and input data. Mohr, Taylor, and Newell [9] have performed the adjustment with

certain input data deleted to reveal the contribution of each route and found

Route 1 : εJ = (−281± 95)× 10−9.

Route 2 : εJ = (407± 143)× 10−9.
(13)

Thus the routes individually give values of εJ that differ significantly from zero but

have opposite sign. The result in equation 12 must therefore be seen as fortuitous,

and confidence in the direct test of KJ = 2e/h cannot be said to extend below a few

parts in 107. The origins of the discrepancy between the two routes can be traced to

inconsistencies among the input data that were already discussed in the 2002 CODATA

report. To find a result free of these inconsistencies, Mohr, Taylor, and Newell also

performed the adjustment with both sets of discrepant data deleted [9] and found

εJ = (238± 720)× 10−9. (14)

Thus using only nondiscrepant data gives a result that is consistent with zero but with

an uncertainty of about 7 parts in 107. For all of the alternative tests just described,

the value and uncertainty of εK are essentially unchanged, so the result of equation 8

remains valid.

Unlike the case described above for RK = h/e2, a simplified version of the direct

test of KJ = 2e/h is not possible. This is not due to a lack of precise measurements of

KJ in terms of the SI volt. A Watt balance combined with the SI ohm from a calculable

capacitor yields a value of KJ, and the best result of this type to date has an uncertainty

of about 2×10−8 [27]. The difficulty is rather that there is no independent value of 2e/h

with comparable precision. Because the CODATA adjustment of fundamental constants

assumes KJ = 2e/h exactly, the 2006 recommended value of 2e/h is dominated by this

same Watt balance result. The best value of 2e/h that does not assume KJ = 2e/h

comes from a measurement of the Faraday constant in an electrolysis experiment, and

its uncertainty is about 1 part in 106 [7].

The status of the JVS leg of the QMT can be summarized as follows. (1) There

is no theoretical prediction that εJ is not zero, and the general arguments for exact

quantization are viewed as applicable to real devices. (2) There is considerable evidence

that the voltage produced by a JVS is universal at the level of 10−10, and possibly

much lower. (3) A direct test of KJ = 2e/h is complicated by discrepancies among the

input data for various fundamental constants. A conservative test excluding discrepant

input data indicates that εJ is smaller than about 7 parts in 107, while other tests raise

questions about possible corrections at 3 or 4 parts in 107. As with the QHR leg, this is

well above the experimental uncertainty of modern JVS systems, which is a few parts

in 109.
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3.3. Single-electron Tunneling Leg

In remarkable constrast to the cases of the QHR and the JVS, little attention has

been paid to the question of whether the relation QS = e is exact, either theoretically

or otherwise. This is probaby due to the fact SET standards are not currently used

for calibrations and intercomparisons in electrical metrology, so there has been little

practical reason to worry about a correction in this case. In the area of current, using

resistance and voltage artifacts traceable to the QHR and JVS is adequate for existing

calibration needs and in fact this may continue to be the preferred path even after

adoption of an SI in which h and e are defined constants. In the area of capacitance,

a prototype standard based on counting electrons has been demonstrated [28] but it

seems unlikely to rival the performance of calculable capacitors in either uncertainty or

ease of use. Nevertheless, investigation of a correction to QS = e remains an important

fundamental question and it is possible that a need for calibrations directly involving

SET standards of current or charge will arise in the future. This seems particularly

likely at the extremes of small currents or charges, small voltages, and high resistances.

From the perspective of the QMT, it is necessary to consider the status of all three legs

in order to interpret any experimental results.

What are the theoretical constraints on the charge transfered through the tunnel

junctions in an SET device? Although some general properties of fractional charge

have been described [29, 30], it appears there has been no detailed analysis of this

question. Perhaps the following discussion will show why there should be. Within a

single conductor, the transfer of charge between two points is not quantized at all. One

can imagine displacing the electron gas relative to the lattice by an arbitrarily small

amount, which will result in an arbitrary charge on the surfaces. At the other extreme,

charge transfer between two completely isolated conductors is also well understood.

Since the charge on any isolated object is an integer multiple of e, this is the smallest unit

of charge that can be transferred between objects (various aspects of charge quantization

and the neutrality of matter are reviewed in [31]). The regime of SET is precisely at the

crossover between the two extremes just described: the very nature of a tunnel junction

is to provide partial isolation between the metal electrodes on either side. Thus one is

compelled to wonder whether it is possible that QS might be slightly different from e in

this crossover regime.

One aspect of the middle ground occupied by SET is understood, and may be a

fruitful starting point for a detailed analysis of possible corrections to QS = e. As

illustrated in figure 2a, the conditions under which charge transfer through a tunnel

junction becomes discrete are twofold. The charge Q of an island isolated by a tunnel

junction, and coupled to a voltage source and an electrometer by capacitors [32], will

show discrete steps when two sources of fluctuations are suppressed. First, the single-

electron charging energy of the island, EC = e2/2Ctot where Ctot is the total island

capacitance, must be larger than the energy of thermal fluctuations at temperature T ,

Eth = kBT . Second, the junction must be opaque enough that quantum fluctuations
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Figure 2. The transition between discrete and continuous charge transfer through
a tunnel junction. (a) Schematic of an “electron box” measurement [32]. (b) Island
charge Q vs. charge induced by the gate voltage Ug.

are suppressed, which can be quantified as follows. The lifetime of the island charge

set by tunneling is τisl ∼ RCtot. The timescale for quantum fluctuations of the island

charge is ∆E∆t ∼ h/2π with ∆E = EC. The island charge will be well defined,

and thus observable as discrete multiples of e, when ∆t >> τisl, which occurs when

R >> h/e2 ≈ 26 kΩ. Thus the charge measured by the electrometer as a function of

the voltage Ug will vary smoothly for R << h/e2 and show discrete steps for R >> h/e2,

as illustrated in figure 2b. (A rigorous treatment of the conditions for observing discrete

charge transfer in tunnel junctions can be found in [33].)

Given this picture of the transition between continuous and discrete charge transfer

through a tunnel junction, one must then ask whether it is necessarily the case that

the amount of charge transfered becomes exactly e at the same point where it becomes

discrete. In other words, is it possible that for some regime of junction resistance (and/or

temperature) SET devices could transfer charge in discrete units that were slightly

different from e? It is tempting to say “No” and take the view that any deviation from

a quantized island charge simply reflects fluctuations in the number of quanta and not

in their value, but it would be reassuring to have a rigorous analysis to support this

intuitive view.

There have been no empirical tests of the universality of the current or charge from

an SET standard. This is clearly an area that needs more attention [34], but to date

progress has been limited by the fact that few groups have been able to operate SET

current standards with the required accuracy.

Since there are currently no observational equations in the CODATA analysis that

involve QS, a direct test similar to those done for the QHR and JVS legs has not been

done. There are two experiments that have measured the current produced by an SET

device with a calibrated commercial ammeter [35, 36]. Both found agreement with the
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expected value of I = ef within a relative standard uncertainty of about 1 × 10−4.

However, these experiments could not distinguish between two possible effects: failure

of the SET device to transfer any charge during some cycles (transfer errors) and a

deviation from QS = e for cycles that did transfer charge [34]. A conclusive test requires

that transfer errors be measured independently (a method for doing this is described in

[37]).

The status of the SET leg of the QMT can be summarized as follows. (1) There is

no theoretical prediction that εS is not zero, but the question of possible corrections has

received little attention. Furthermore, it is worrisome that SET devices operate precisely

in a regime where one might expect to find subtle corrections. (2) The universality of

SET standards has not been tested at all. (3) The best direct tests of QS = e have large

uncertainty and do not rule out confounding effects. For comparison, the measured

error rate per cycle in a 7-junction SET pump, which measures mistakes in transfering

charge quanta but not the value of the quanta, is of order 1 part in 108 [37, 38].

Given all this, it is remarkable that discussions of the QMT have generally focused

on what it can reveal about the JVS and QHR legs when the SET leg is by far the

weakest!

3.4. Implications for QMT Experiments

In light of the very different status of the three legs of the QMT, how should one

interpret the results of an actual QMT experiment? The current state of knowledge

leads to various thresholds in uncertainty at which different conclusions can be drawn.

A result at about 1 part in 106 or above should be interpreted primarily in terms of

the SET leg, since there is little question about the QHR and JVS legs in this regime.

A result between about 7 parts in 107 and 3 parts in 108 would bear on both the SET

and JVS legs, but do little in terms of additional confidence in the QHR leg. Absent a

better understanding of the SET leg, the possibility of offsetting corrections would be

important in this regime. A result below about 3 parts in 108 would bear on all three

legs, and again offsetting corrections would have to be considered.

4. Recent NIST Result for the QMT

A first result for the QMT, with a relative standard uncertainty slightly less than 1 part

in 106, has recently been completed at NIST. I will briefly describe the experiment and

then use the discussion above to draw conclusions from the result. The experiment

involves NIST’s first-generation Electron Counting Capacitance Standard, ECCS-1,

described in [28]. Although ECCS-1 was first demonstrated in 1998, it is only recently

that a full uncertainty budget for the comparison with a calculable capacitor has been

completed. This is due in large part to recent progress in determining the frequency

dependence of the cryogenic capacitor used in the ECCS [39]. Reference [40] has a

complete description of the uncertainty budget and operational details of the ECCS.
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Figure 3. Schematic diagram of the electron counting capacitance standard.

The essential idea of the ECCS circuit is illustrated in figure 3. An SET pump

operated for N cycles transfers a charge NQS onto a capacitor C, causing a voltage

change ∆U , and from the definition of capacitance we have

C =
NQS

∆U
. (15)

The capacitor can be measured in terms of the SI farad using a capacitance bridge

traceable to NIST’s calculable capacitor, and we denote this value as C0. The voltage

change is measured with a voltmeter calibrated using a JVS and the value of KJ adopted

in 1990, KJ−90 ≡ 483 597.9 GHz/V [41]. Thus ∆U is measured in terms of a “1990 volt”

V90, and the conversion to SI volts is made via the defining relation

V90

V
≡ KJ−90

KJ

. (16)

Using the notation that a quantity X is the product of its numerical value and its unit,

X = {X}YY = {X}Y′Y′, we can write ∆U as

∆U = {∆U}SI V = {∆U}90 V90 = {∆U}90

KJ−90

KJ

V. (17)

Eqn. 15 then becomes

C0 =
NQSKJ

{∆U}90KJ−90V
= CECCS(1 + εS)(1 + εJ), (18)

where CECCS is the value of NQS/∆U assuming εS = 0 and εJ = 0. The comparison of

the ECCS with a calculable capacitor can then be expressed as a measurement of the

ratio

C0

CECCS

= (1 + εS)(1 + εJ) ≈ 1 + εS + εJ. (19)

As described above in section 3.1, calculable capacitors have been linked to the

QHR with an uncertainty of about 2 × 10−8. In these experiments, the balance of

reactive and resistive impedances realized with a quadrature bridge gives

RQHR =
A2

ωC0

, (20)
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where A2 represents various known factors such as bridge ratios. Using the defining

expression for the QHR in equation 2, C0 is then given by

C0 =
A2i

ω

e2/h

1 + εK

. (21)

Combining this with equation 19 yields an expression similar to that in equation 6,

where again A2, i, and ω can be chosen such that we have

1 = 1 + εJ + εS + εK. (22)

Thus the comparison of an ECCS with a calculable capacitor, combined with the link

between the calculable capacitor and the QHR, yields a QMT that provides the same

test as the original version described in section 2.

The mean of the three values obtained using NIST’s ECCS-1 is [40]

C0

CECCS

− 1 = (−0.10± 0.92)× 10−6. (23)

According to the conventional view of the QMT, this result closes the QMT with an

uncertainty slightly below 1 part in 106, which is too large to provide any additional

confidence in the quantum standards. However, the discussion above shows how we

can say more than this. First, since the QHR leg is not essential to this result, we can

immediately narrow the discussion to εJ and εS only. Furthermore, since even the largest

values of εJ indicated by the tests of Mohr, Taylor, and Newell (see eqns. 13 and 14)

are much smaller than the uncertainty of the ECCS-1 result, it is reasonable to exclude

εJ also. Thus the primary conclusion should be that the SET leg has been tested at

an uncertainty of 9 parts in 107 and found to have no correction, i.e., the experiment

shows εS < 9.2× 10−7. Given the lack of other experimental tests of εS to date, this is

a significant result.

5. Conclusions

Considering theory, universality, and direct tests involving fundamental constants, the

current status of the individual legs of the QMT is quite different. On all three counts,

the SET leg is currently much weaker than the other two. Further investigation of both

the theory of discrete charge transfer through tunnel junctions and of the universality

of SET devices is needed to increase confidence in quantum standards of current and

charge. A particularly interesting study would be measurements of the value of QS

for a range of junction resistance [34]. Any systematic dependence on resistance would

provide a clue to possible correction mechanisms, and the absence of such a dependence

would put a useful constraint on such mechanisms. While today it seems entirely likely

that all three quantum electrical standards are indeed exact, searching for the limits of

these effects may yet lead to a better fundamental understanding of them and possibly

to entirely new discoveries.
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